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The Schrodinger-Debye System ‘

The Cauchy problem for the Schrodinger-Debye system is:

()
10 u + %Au = uw,

/"

pov + v = Nul?,
\u(z,0) = ug(z), v(z,0)=uvo(x).

where, forn = 1,2, 3
u:RY xR, — C, v:RY xRy — R,
and
@ >0 A= *£1.

The Schrodinger-Debye system models the propagation of an electomagnetic
wave in a non-resonant medium where the response time is relevant.

2




The second equation, for the real function v(x, 1)
1O +v = AMul?,

is just an ODE which can be easily solved

t
vl t) = o) £ [ e e )
0

decoupling the original system into just an integro-differential equation

/

t
. iOu + 2 Au = e Hygu + %u/ e~ = 1|y ()2 dt,
0

\u(x, 0) = up(x).




The Cubic Nonlinear Schrédinger equation (cNLS)

In the case ;1 = 0 (absence of delay) the system reduces to the celebrated cubic
NLS equation

1
10pu + iAu = 4 |ul*u

where
u : RZ X Ry — C,
and the equation is classified, depending on the sign of the nonlinearity, as

Focusing: A=—1
Defocusing: A = +1




Well posedness results for the cNLS equation

Recall that the scaling invariance for the cNLS is given by
ur(z,t) = Au(Az, \°t)

and therefore the scaling criticial Sobolev index is

n
8025—1

e |Local Well-posedness

— J. Ginibre, G. Velo [J. Funct. Anal., 1979] proved LWP for the
(subcritical) cases s = 1 and n = 1,2, 3.

— Y. Tsutsumi [Funk. Ekva., 1987] proved LWP for the (subcritical) case
s=0and n=1.




e |ocal Well-posedness

— T. Cazenave, F. Weissler [Lecture Notes in Math, 1989] proved LWP
for the critical case s = 0 and n = 2.

— T. Cazenave, F. Weissler [Nonlinear Anal. T.M.A., 1990] proved LWP
for the fractional critical, and subcritical, exponents s > max{0, s..},
forn > 1.

e Global Well-posedness

— In the L? subcritical case (n = 1) global existence is an immediate
consequence of the LWP result and the L? conservation.

— In the defocusing (A = +1) and H'! subcritical cases (n = 1,2, 3)
global existence is an immediate consequence of the LWP result and
the energy conservation.

— In the critical cases L? (n = 2) and H'/? (n = 3) there is global
existence for small initial data.




Blow-up results for the cNLS equation in 4!

In the focusing (A = —1) case

i + 2 Au = —|ulu

e The Gagliardo-Nirenberg inequality and the energy conservation guarantee

global existence for arbitrary H'! initial data only as long as the problem is
L? subcritical (n=1).

e For the L? critical case (n=2) the optimal constant in the
Gagliardo-Nirenberg inequality shows that if the L? norm of the H! initial
data is sufficiently small - smaller than the mass of the standing wave - the
H' solution is global.

e For the L? supercritical, H' subcritical case (n=3) the solution is global
only if the H! initial data is small.




For the defocusing cNLS there is actually blow-up of the ' solutions in the
L? critical and supercritical regimes (n = 2, 3).

In these regimes the virial inequality is

d2

- / 22 u(z, 1)2dz < SnEy

where Ej is the conserved energy of the cNLS
1 1
Ey = §/|Vu|2da:— Z/\u\‘ldx.

Thus, by making ||ug|| 1 large enough, one can always achieve Fy < 0 which
implies finite time blow up of the H'! solution.




Conserved Quantities of the Schrodinger-Debye System

The solutions of the Schrodinger-Debye system satisfy conservation of the L?
norm

/|u(az,t)|2da::/|u0(x)|2dx

and the pseudo-Hamiltonian structure

d
GEO =2 [ (@)ds
di -

where

E(t) = {IVu|? + AMul* — A (ve)? bz = / {|Vul? + 2v|u|® — M* }dz.
RN RN




Well-posedness for the Schrodinger-Debye System ‘

n=123

In 1998 and 2000, B. Bidégaray established the following local existence
results, using the Strichartz estimates for the unitary Schrodinger group applied
to the decoupled integro-differential equation

Theorem: Let n =1,2,3 and (ug,vo) € H*(R™) x H*(R™). Then, for small
enough T = T(||ug||m+,

lvg || =), the initial value problem for the
Schrodinger-Debye system has a unique solution

(a) we L*®(]0,T]; H*(R™)) if s > n/2,
(b) w e L ([0,T]; H*([R"™)) if s =1,
(c) we C([0,T); L2(R™)) O L™ ([0, T]; L*(R™)) if s = 0.

Finally, if (ug,vo) € H*(R™) x L*(R"™), there also exists a unique solution
(u,v) € C ([0,T]; H*(R") x L*(R™)).
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n=1

In 2009, A. Corcho and C. Matheus established the following, in the framework

of Bourgain spaces

Theorem: For any (ug,vg) € H*(R) x H*(R), where

s| —1/2 </l <min{s+1/2, 2s +1/2} and s> —1/4,

there exists a time T' = T'(||uo|| g+, ||[vo||zr¢) > 0 and a unique solution

(u(t),v(t)) of the initial value problem in the time interval [0, T'], satisfying
(u,v) € C([0,T); H*(R) x H'(R)) .

In addition, in the case / = s with —3/14 < s < 0, the local solutions can be

extended to any time interval [0, 7.
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n=2.3

Using Bourgain space techniques analogous to J. Ginibre, Y. Tsutsumi, G. Velo
[J. Funct. Anal. 1997], for the Zakharov system, we established the following
LWP result

Theorem: Let n = 2,3. For any (ug,vg) € H*(R") x H*(R™), with s and /
satisfying the conditions:

max{0,s — 1} < /¢ < min{2s, s+ 1}

there exists a positive time T' = T'(u, ||uo||m+, ||vol| g¢) and a unique solution

(u(t),v(t)) of the initial value problem on the time interval [0, T], such that

(u,v) € C([0,T]; H¥(R™) x H*(R™)) .

Obs: The cases H5(R™) x H5(R™), s > 0 and H*T1(R") x H5(R"), s >0
are included in this theorem.

12




The idea of the proof consists, not in decoupling the system, but as usual in
writing it in integral form through Duhamel’'s formula

u(t) = S(t)ug — z‘/ot St —tuv(t") dt’

t
v(t) = e hyg 4 2 / e~ =)/ By (¢ |? dt’
0

L K

where S(t) = /2 denotes the Schrodinger unitary propagator.

The solution to the system is obtained by applying a Picard iteration scheme to
this integral formulation, showing that it contracts to a fixed point in
appropriate Bourgain spaces with time exponents > 1/2.

fullxen = 1| < € >*< 7+ 32 > (€, 7)1z,

il e =[] <& >'<7>¢9(8 1)Lz -
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The proof typically reduces to proving multilinear estimates for the nonlinear
terms.

For the previous LWP result this was obtained by establishing the following
bilinear inequalities.

H’LL?)HXS,—1/2+ SJ H’LL||X3,1/2+||’UHH1,1/2+ S Z O, [ Z HlaX{O, S — 1}
and
H’LL”LTJHHl,—1/2+ S HU||X3,1/2+H’UJHXS,1/2+ S Z 0, [ S min{23, S + 1}
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Global Well-posedness for the Critical Model

n =2

Theorem: Let (ug,vo) € H'(R?) x L?(R?). Then, for all T > 0, there exists a
unique solution

(u,v) € C([0,T); H'(R?) x L*(R?))

to the initial value problem associated to the Schrodinger-Debye system (both,
for the defocusing (A = 1) as well as focusing (A = —1) cases).
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The idea of the GWP proof is based on obtaining an a priori bound for the
quantity

F@&) = [[Vu(, )lze + vl Iz

which, together with the conservation of the L? norm of u, yields control of
the full norm ||u(-,t)|| g1 + ||v(-, )] 2.

Now, the term ||v(-,t)||7. is controlled by the explicit formula

7

t
v(z,t) = e VHuy(z) + 2 / e~ = 1y, ) dt’
0

whereas the term ||Vu(-,)||%. is controlled through

/ Vul*dr = E(t) — / {20|u* — Mo }dz,
RN RN
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The only particular ingredient is the use of the Gagliardo-Nirenberg inequality,
for n = 2,

1/2 1/2
|ull s < Con || Vul[ 3o |Jul| 32>

For example, using the explicit formula for v(z,t)

t
lo( D)l = < Ilvol . +%/O o) )2 dt

t

CQ

< loollze + % [ )2 IVt
0

t

2

= o2 + Sxbielsz [ ygu, )] .
0
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which, after squaring and using Holder, becomes

2

o t
o) < 2ol + 2 (Elieliz [ pvu. o) at

4 2 t
< 2ol + 2eadblia [ gy ar
0

Then, this estimate of ||v(-,t)||z2 is used in the pseudo-Hamiltonian structure
equation for E(t), to finally produce the full a priori bound for f(t)

f(t) <ag+ o /tf(t’)dt’, forall te [0, T,
0

where ag = ag(||uol|2, ||vol|lr2), @1 = a1 (||ug||r2) are constants and

L

T =
g 4CéNHUOH2L2

depends only on the conserved quantity ||ug||rz-
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Observations:

e The solution can grow very rapidly and explode at t=0c.

e In n =2 the H' norm barely fails to control L therefore this does not
rule out blow up of ||ul|L~.

e In n = 2 and initial data in H! x H! the previous global result shows that
blow up can only occur for ||Vu||r2.

e In n =1 the previous proof can be easily modified to prove global
existence in H! x H?, for which the work of Corcho & Matheus already
provided LWP.
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That's All Folks!
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